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We report a comprehensive investigation of a model for peeling of an adhesive tape along with a nonlinear
time series analysis of experimental acoustic emission signals in an effort to understand the origin of intermit-
tent peeling of an adhesive tape and its connection to acoustic emission. The model represents the acoustic
energy dissipated in terms of Rayleigh dissipation functional that depends on the local strain rate. We show that
the nature of the peel front exhibits rich spatiotemporal patterns ranging from smooth, rugged, and stuck-peeled
configurations that depend on three parameters, namely the ratio of inertial time scale of the tape mass to that
of the roller, the dissipation coefficient, and the pull velocity. The stuck-peeled configurations are reminiscent
of fibrillar peel front patterns observed in experiments. We show that while the intermittent peeling is con-
trolled by the peel force function, the model acoustic energy dissipated depends on the nature of the peel front
and its dynamical evolution. Even though the acoustic energy is a fully dynamical quantity, it can be quite
noisy for a certain set of parameter values, suggesting the deterministic origin of acoustic emission in experi-
ments. To verify this suggestion, we have carried out a dynamical analysis of experimental acoustic emission
time series for a wide range of traction velocities. Our analysis shows an unambiguous presence of chaotic
dynamics within a subinterval of pull speeds within the intermittent regime. Time-series analysis of the model
acoustic energy signals is also found to be chaotic within a subinterval of pull speeds. Further, the model
provides insight into several statistical and dynamical features of the experimental acoustic emission signals
including the transition from burst-type acoustic emission to continuous-type with increasing pull velocity and
the connection between acoustic emission and stick-slip dynamics. Finally, the model also offers an explana-
tion for the recently observed feature that the duration of the slip phase can be less than that of the stick phase.
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I. INTRODUCTION

Adhesive tapes are routinely used in a variety of situa-
tions including daily usage as stickers, in packing and seal-
ing, etc. Yet, day-to-day experiences such as intermittent
peeling of an adhesive tape and the origin of the accompa-
nying audible noise have remained ill-understood. This may
be partly attributed to the fact that adhesion is a highly in-
terdisciplinary subject involving diverse but interrelated
physical phenomena such as intermolecular forces of attrac-
tion at the interface, mechanics of contact, debonding and
rupture, viscoplastic deformation and fracture �1�, and fric-
tional dissipation that operates during peeling �1–3�. Yet an-
other reason is that most information on adhesion is obtained
from quasistatic or near-stationary conditions. Apart from
scientific interest, understanding the intermittent peel or the
stick-slip process has relevance to industrial applications as
well. For example, optimizing production schedules that in-
volve pasting or peeling of an adhesive tape at a rapid pace
in an assembly line requires a good understanding of stick-
slip dynamics. Moreover, insight into the time dependent and
dynamical aspects of adhesion is expected to be important in
the design of adhesives with versatile properties required in a
variety of applications, in understanding the mechanisms
leading to the failure of adhesive joints as also in understand-
ing biologically relevant systems such as the gecko �4� or
reorientation dynamics of cells �5�.

Adhesion tests are essentially fracture tests designed to
study adherence of solids and generally involve normal pull-
ing off and peeling. Such experiments can be performed un-

der quasistatic or near-stationary and nonequilibrium condi-
tions as well. The latter kind of experiments demonstrate the
rate dependence of adhesive properties. It is this rate depen-
dence and the inherent nonlinearity that leads to a variety of
instabilities. These kinds of peeling experiments are com-
paratively easy to set up in a laboratory. Moreover, the setup
also allows one to record unusually long force waveforms
and acoustic emission �AE� signals that should be helpful in
extracting useful information on the nonlinear features of the
system.

One type of peeling experiment that yields dynamical in-
formation is carried out with an adhesive tape mounted on a
roller subjected to a constant pull velocity �6,7�. Peeling ex-
periments have also been performed under constant load
conditions �7,8�. At low pull velocities, the velocity of the
contact point v keeps pace with the imposed velocity V. The
same is true at high velocities as well. However, there is an
intermediate regime of traction velocities where the peeling
is intermittent. Peeling in this regime is accompanied by a
characteristic audible noise �6–8�. It must be stressed that
these two stable dissipative branches refer to stationary
branches. Even so, the stick-slip dynamics observed in the
intermediate region of pull velocities has been attempted by
assuming an unstable branch connecting the two stable
branches. The strain energy release rate shows a power law
for low velocities with an exponent around 0.3. The high
velocity branch also shows a power law but with a much
higher exponent value of about 5.5 �6�. The low velocity
branch is known to arise from viscous dissipation and that at
high velocity corresponds to fracture. These studies report a
range of waveforms starting from sawtooth, sinusoidal, or
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even irregular waveform that has been termed “chaotic” �6�.
More recently, the dynamics of the peel point has been im-
aged as well �9�.

Stick-slip processes are usually observed in systems sub-
jected to a constant response wherein the force developed in
the system is measured by dynamically coupling the system
to a measuring device. The phenomenon is experienced rou-
tinely, for example while writing with chalk on a blackboard,
playing violin, or walking down a staircase with the hand
placed on the hand rail. A large number of studies on stick-
slip dynamics have been reported in systems ranging from
atomic length scales, for instance stick-slip observed using
an atomic force microscope �11�, to geological length scales
like the stick-slip of tectonic plates causing earthquakes
�12,16�. A few well known laboratory scale systems are as
follows: sliding friction �2,3,10� and the Portevin–Le Chat-
elier �PLC� effect �13,14�, a kind of plastic instability ob-
served during tensile deformation of dilute alloys �14,15�, to
name only two. Most stick-slip processes are characterized
by the system spending a large part of the time in the stuck
state and a short time in the slip state. This feature is ob-
served both in experiment and in models. See, for instance,
�10–12�. A counterexample where the time spent in the stuck
is less than that in the slip state �observed at high applied
strain rates� is the PLC effect �13�. These studies show that
while the physical mechanisms that operate in different situ-
ations can be quite varied �3�, in general all stick-slip pro-
cesses result from a competition among the inherent internal
relaxational time scales �14,15� and the applied time scale. In
the case of peeling, one identifiable internal relaxation time
scale is the viscoelastic time scale of the adhesive. Other
relevant time scales that may be operative need to be in-
cluded for a proper description of the dynamics. All stick-
slip systems are governed by deterministic nonlinear dynam-
ics.

Models that attempt to explain the dynamical features of
stick-slip systems use the macroscopic phenomenological
negative force response �NFR� feature as an input, although
the unstable region is not accessible. This is also true for
models dealing with the dynamics of the adhesive tape in-
cluding the present work. In this context, it must be stated
that there is no microscopic theory that predicts the negative
force-velocity relation in most stick-slip situations except in
the case of the PLC effect, where we have provided a dy-
namical interpretation of the negative strain rate sensitivity
of the flow stress �17,18� �see below�. There are several the-
oretical attempts to model the stick-slip process observed
during peeling of an adhesive tape. Maugis and Barquin �6�
were the first to write down a model set of equations suitable
for the experimental situation and to carry out approximate
dynamical analysis. These equations were later modified and
a dynamical analysis of these equations was reported �19�.
However, the stick-slip oscillations were not obtained as a
natural consequence of the equations of motion �20,21�. In-
deed, these equations are singular �22�. Subsequently, we
devised a special algorithm to solve these differential alge-
braic equations �DAE� �22,23�. This algorithm allows for
dynamical jumps across the two stable branches of the peel
force function. This was followed by converting the DAE
into a set of nonlinear ordinary differential equations �ODE�

by including the missing kinetic energy of the stretched tape
thereby lifting the singular nature of the DAE �22,24�. Apart
from supporting dynamical jumps, the ODE model exhibits
rich dynamical features. However, all these studies discuss
only contact point dynamics while the tape has a finite width.
The ODE model has been extended to include the spatial
degrees of freedom that is crucial for describing the dynam-
ics of the peel front as also for understanding the origin of
acoustic emission �25,26�.

Acoustic emission is commonly observed in an unusually
large number of systems such as seismologically relevant
fracture studies of rock samples �27–29�, martensite transfor-
mation �30–32�, microfracturing process �33�, volcanic activ-
ity �34�, collective dislocation motion �35,36�, etc. The gen-
eral mechanism attributed to AE is the abrupt release of the
stored potential energy, although the underlying mechanisms
triggering AE are system-specific. The nondestructive nature
of the AE technique has been useful in tracking the micro-
structural changes during the course of deformation by moni-
toring the AE signals. For instance, it is used in fracture
studies of rock samples �28� and, more recently, a similar
approach has been used in understanding collective behavior
of dislocations �36�. In both of these cases, multiple trans-
ducers are used to locate the hypocenters through an inver-
sion process of arrival times �28,36�. In the latter case, by
analyzing the dislocation sources generating AE signals, the
study establishes the fractal nature of the collective motion
of dislocations. �In contrast to these dynamical studies, most
studies on AE �33–35� are limited to compiling the statistics
of the AE signals in an effort to find experimental realiza-
tions of self-organized criticality �37�.� However, in the case
of peeling, using multiple transducers is far from easy and
only a single transducer is used leading to scalar time series.
In such situations, dynamical information is traditionally re-
covered using nonlinear time series analysis �38–40�. How-
ever, a major difficulty arises in the present case due to a
high degree of noise present and the associated difficulties
involved in curing the noise content.

Despite the large number of experimental investigations
and to a lesser extent model studies, several issues related to
intermittent peeling and the associated acoustic emission re-
main ill-understood. For instance, there are no models �even
in the general area of stick-slip� which show that the duration
of the stick phase can be equal to or even less than that of the
slip phase �9�, a feature that is quite unlike conventional
stick-slip dynamics. From a dynamical point of view, this is
also suggestive of the existence of at least three time scales.
The model represents the acoustic energy in terms of the
Rayleigh dissipation functional that depends on the local
strain rate of the peel front and thus is sensitive to the nature
of the peel front dynamics. While preliminary results of the
model �25,26� based on a small domain of parameters were
encouraging, no systematic study of the influence of all the
relevant time scales on the dynamics of the peel front was
carried out. In particular, while the nature of experimental
AE signals changes with the traction velocity, the study of
the influence of pull speed on internal relaxational mecha-
nisms, the consequent peel front dynamics, and its relation-
ship with the acoustic energy were not studied either.

The principal objective of the present study is to under-
stand the various contributing mechanisms to the intermittent
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peel process and its connection to acoustic emission. The
objective is accomplished by carrying out a systematic study
of the influence of the three internal relaxational time scales,
namely the two inertial time scales of the tape mass and the
roller inertia, and the dissipative time scale of the peel front.
In particular, we report the influence of the experimentally
relevant pull velocity �covering the entire range� on the peel
front dynamics. These studies show that the model exhibits
rich spatiotemporal peel front patterns �including the stuck-
peeled configurations that mimic fibrillar patterns seen in
experiments� arising due to the interplay of the three time
scales. Consequently, varied patterns of model acoustic sig-
nals are seen. Another consequence of the inclusion of the
three time scales is that it explains the recent observation that
the duration of the slip phase can be larger than that of the
stick-phase �9�. Interestingly, the model studies show that it
is possible to establish a correspondence between the various
types of model acoustic energy profiles with certain peel
front patterns. More importantly, the study shows that even
as the acoustic energy dissipated is the spatial average of the
local strain rate, it can be noisy, suggesting the possible de-
terministic origin of the experimental acoustic signals. Here,
we report a detailed analysis of the statistical and dynamical
analysis of the experimental AE signals. The study shows
that while the intermittent peeling is controlled by the peel
force function, acoustic emission is controlled by the dynam-
ics of the peel front patterns that determine the local strain
rate. This, coupled with a comparative study of a comprehen-
sive nonlinear time series analysis �TSA� of the experimental
AE signals for a wide range of traction velocities supple-
mented by a similar study on the model acoustic energy time
series, provides additional insights into the connection be-
tween AE signals and stick-slip dynamics. In particular, the
model displays the recently observed experimental feature
that the duration of the slip phase can be more than that of
the stick phase with an increase in the pull velocity. Finally,
the model studies together with the dynamical analysis of the
model acoustic signal provide a dynamical explanation for
the changes in the nature of the experimental AE signal in
terms of the changes in the peel front patterns.

II. THE MODEL

A typical experimental setup consists of an adhesive tape
mounted on a roller. The tape is pulled at a constant pull
velocity using a motor. A schematic representation of the
setup is shown in Fig. 1�a�. The axis of the roller passes
through the point O into the plane of the paper. The drive
motor is positioned at O�. Let the distance between O and O�

be denoted by l. P is the contact point on the peel front PQ.
Let the peeled length of the tape PO� be denoted by L. Sev-
eral geometrical features can be discussed using a projection
onto the plane of the paper. Let the angle between the tan-
gent to the contact point P and PO� be denoted by � and the
angle �POO� by �. Then, from the geometry of Fig. 1�a�,
we get L cos �=−l sin � and L sin �= l cos �−R, where R is
the diameter of the roller tape. Let the local velocity of the
peel point be denoted by v and the displacement �from a
uniform stuck state� of the peel front by u. Then, the pull
velocity has to satisfy

V = v + u̇ + R cos ��̇ . �1�

As the peel front has a finite width, we define the corre-
sponding quantities along the peel front coordinate y �i.e.,
along the contact line� by v�y�, ��y�, and ��y�. Then as the
entire tape width is pulled a constant velocity, the above
constraint generalizes to

1

b
�

0

b

�V − v�y� − u̇�y� − R�̇�y�cos ��y��dy = 0, �2�

where b is the width of the tape. However, we are interested
in the deformation of the peel front of the adhesive, which is
a soft viscoelastic material. For the purpose of modeling,
while we shall ignore the viscoelastic nature of the adhesive,
we recognize its low modulus, i.e., we assume an effective
spring constant kg �along the contact line� whose value is
much smaller than the spring constant of the tape material kt.
This also implies that the force along PO� equilibrates fast
and therefore the integrand in Eq. �2� can be assumed to
vanish for all y. Thus, the above equation reduces to Eq. �1�.

The present model is an extension of the ODE model for
the contact point dynamics �24�. The ODE model already
contains information on the inertial time scale of the tape
mass that allows for dynamical jumps across the two
branches of the peel force function. The extension involves
introducing the Rayleigh dissipation functional to deal with
acoustic emission apart from introducing the spatial degrees
of freedom. The equations of motion for the contact line
dynamics are derived by writing down the relevant energy
terms consisting of the kinetic energy, potential energy, and
the energy dissipated during the peel process. The total ki-
netic energy Uk is the sum of the rotational kinetic energy of
the roller tape and the kinetic energy of the stretched part of
the tape. This is given by

UK =
1

2
�

0

b

���̇�y� +
v�y�

R
�2

dy +
1

2
�

0

b

��u̇�y��2dy . �3�

Here, � is the moment of inertia per unit width of the roller
tape and � is the mass per unit width of the tape. The total
potential energy Up consists of the contribution from the dis-
placement of the peel front due to stretching of the peeled
tape and possible inhomogeneous nature of the peel front.
This is given by

10
1

10
−3

0.6

1.2

vs

φ
(v

s )

A

B
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D

(b)

FIG. 1. �Color online� �a� A schematic representation of the
experimental setup. �b� Plot of ��vs� as a function of vs.
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UP =
1

2
�

0

b kt

b
�u�y��2dy +

1

2
�

0

b

kgb� �u�y�
�y

	2

dy . �4�

The peel process always involves dissipation. Indeed, the
peel force function with the two stable branches, one corre-
sponding to low velocities and another at high velocity,
arises from two different dissipative mechanisms. Apart from
this, there is an additional dissipation that arises from the
rapid rupture of the peel front, which in turn results in the
accelerated motion of local regions of the peel front. We
consider this accelerated motion of the local slip as the
source responsible for the generation of acoustic signals �25�.
Any rapid movement also prevents the system from attaining
a quasistatic equilibrium, which in turn generates dissipative
forces that resist the motion of the slip. Such dissipative
forces are modeled by the Rayleigh dissipation functional
that depends on the gradient of the local displacement rate
�41�. Indeed, such a dissipative term has proved useful in
explaining the power law statistics of the AE signals during
martensitic transformation �30–32� as also in explaining cer-
tain AE features in fracture studies of rock sample �42�.
Then, the total dissipation can be written as the sum of these
two contributions,

R =
1

b
�

0

b � f„v�y�…dvdy +
1

2
�

0

b �u

b
� �u̇�y�

�y
	2

dy , �5�

where f�v� physically represents the peel force function as-
sumed to be derivable from a potential function ��v�
=
f�v�dv �see Ref. �24��. We denote the second term in Eq.
�5� by RAE, which is identified with the energy dissipated in
the form of AE. In the context of plastic deformation, the
acoustic energy arising from the abrupt motion of disloca-
tions is given by RAE	
̇2�r�, where 
̇�r� is the local plastic
strain rate �42�. Following this, we interpret RAE as the en-
ergy dissipated in the form of AE signals. Note that �u̇

�y is the
local strain rate of the peel front. As for the first term in Eq.
�5�, the form of the peel force function we use is given by

f�v� = 402v0.34 + 171v0.16 + 68e�v/7.7� − 369.65v0.5 − 2.

�6�

We stress here that as we are interested in the generic prop-
erties of the peeling process, the exact form of the peel force
function used here is not important as long as major experi-
mental features like the magnitude of the jump in the veloc-
ity across the two branches, the range of values of the mea-
sured peel force function, and in particular the values at the
maximum and minimum, are captured.

As can be seen from Eq. �3�, there are two time scales,
one corresponding to the inertia of the tape mass and the
other due to the roller inertia. In addition, there is a third
time scale, namely the dissipative time scale in Eq. �5� �sec-
ond term�. Thus, there are three internal relaxational time
scales in the model. Apart from this, there is also a time scale
due to the pull speed. Then the nature of the dynamics is
determined by an interplay among all these time scales.

It is more convenient to deal with scaled quantities. Con-
sider introducing basic length and time scales which will be
used to rewrite all the energy terms in scaled form. A natural

choice for a timelike variable is �=�ut with �u
2=kt / �b��. In a

similar way, we introduce a basic length scale defined by d
= fmax /kt, where fmax is the value of f�v� at vmax on the left
stable branch. We define scaled variables by u=Xd
=X�fmax /kt�, l= lsd, L=Lsd, and R=Rsd. The peel force func-
tion f can be written as ��vs�= f(v�vs�) / fmax. Here vs

=v /vc�ud and Vs=V /vc�ud are the dimensionless peel and
pull velocities, respectively, with vc=vmax /�ud representing
the dimensionless critical velocity at which the unstable
branch starts. Using this, we can define a few relevant scaled
parameters Cf = �fmax /kt�2�� /��, k0=kgb2 / �kta

2�, u
=�u�u / �kta

2�, and y=ar, where a is a unit length variable
along the peel front. The parameter Cf is a measure of the
relative strengths of the inertial time scale of the stretched
tape to that of the roller, k0 the relative strengths of the ef-
fective elastic constant of the adhesive to that of the tape
material, and u the strength of the dissipation coefficient.
Then, the scaled local form of Eq. �1� takes the form

Ẋ = �Vs − vs�vc + Rs ls

Ls �sin ���̇ . �7�

In terms of the scaled variables, the scaled kinetic energy
UK

s and scaled potential energy UP
s can be written, respec-

tively, as

UK
s =

1

2Cf
�

0

b/a ���̇�r� +
vcv

s�r�
Rs �2

+ CfẊ
2�r�	dr , �8�

UP
s =

1

2
�

0

b/a �X2�r� + k0� �X�r�
�r

�2	dr . �9�

The total dissipation in the scaled form is

Rs = Rf
s + RAE =

1

b
�

0

b/a �� �„vs�r�…dvs +
u

2
� �Ẋ�r�

�r
�2	dr .

�10�

The first term on the right-hand side is the frictional dis-
sipation arising from the peel force function. The scaled peel
force function, ��vs�, can be obtained by using the scaled
velocities in Eq. �6�. The nature of ��vs� is shown in Fig.
1�b�. Note that the maximum occurs at vs=1. We shall refer
to the left branch AB as the “stuck state” and the high veloc-
ity branch CD as the “peeled state.” The second term on the
right-hand side denotes the scaled form of the acoustic en-
ergy dissipated.

The Lagrange equations of motion in terms of the gener-

alized coordinates ��r�, �̇�r�, X�r�, and Ẋ�r� are

d

d�
� �L

��̇�r�
� −

�L
���r�

+
�Rs

��̇�r�
= 0, �11�

d

d�� �L

�Ẋ�r�
� −

�L
�X�r�

+
�Rs

�Ẋ�r�
= 0. �12�

Using this, we get the equations of motion as

KUMAR, DE, AND ANANTHAKRISHNA PHYSICAL REVIEW E 78, 066119 �2008�

066119-4



�̈ = −
vcv̇

s

Rs − CfR
s

ls

Ls sin �

�1 +
ls

Ls sin ����vs� , �13�

Ẍ = − X + k0
�2X

�r2 +
��vs�

�1 +
ls

Ls sin �� + u
�2Ẋ

�r2 . �14�

However, Eqs. �13� and �14� should satisfy the constraint
Eq. �7�. This consistency can be imposed by using the theory
of mechanical systems with constraints �43�. This leads to an
equation for the acceleration variable v̇s�r� obtained by dif-
ferentiating Eq. �7� and using Eqs. �14�,

v̇s = �− Ẍ +
Rsls

Ls ��̇2�cos � − Rsls� sin �

Ls �2	
+ sin ��̈�� vc. �15�

Equations �7�, �13�, and �15� constitute a set of nonlinear
partial differential equations that determine the dynamics of
the peel front. They have been solved by discretizing the peel
front on a grid of N points and using an adaptive step size
stiff differential equations solver �MATLAB package�. We
have used open boundary conditions appropriate for the
problem. The initial conditions were drawn from the stuck
configuration �i.e., the values are from the left branch of
��vs�� with a small spatial inhomogeneity in X such that they
satisfy Eq. �7� approximately. The system is evolved until a
steady state is reached before the data are accumulated.

The nature of the dynamics depends on the pull velocity
Vs, the dissipation coefficient u, and Cf. We have carried out
detailed studies of the dynamics of the model over a wide
range of values of these parameters keeping other parameters
fixed at Rs=0.35, ls=3.5, k0=0.1 �kt=1000 N /m�, and N
=50 �in units of the grid size�. Larger system size N=100 is
used whenever necessary.

III. TIME-SERIES ANALYSIS OF EXPERIMENTAL
AE SIGNALS

One of the objectives is to carry out statistical and non-
linear time series analysis of experimental AE signals asso-
ciated with the jerky peel process with a view to understand
the results on the basis of model studies. Acoustic emission
data files were obtained from peel experiments under con-
stant traction velocity conditions that cover a wide range of
values from 0.2 to 7.6 cm /s �44�. Signals were recorded at
the standard audio sampling frequency of 44.1 kHz �having
6 kHz bandwidth� using a high-quality microphone. They
were digitized and stored as 16-bit signals in raw binary files.
There are 38 data files each containing approximately 1.2
�106 points. The AE signals are noisy as in most experi-
ments on AE.

Two characteristic features of low dimensional chaos are
the existence of a strange attractor with self-similar proper-

ties quantified by a fractal dimension �or equivalently the
correlation dimension� and sensitivity to initial conditions
quantified by the existence of a positive Lyapunov exponent.
Given the equations of motion, these quantities can be di-
rectly calculated. However, when a scalar time series is sus-
pected to be a projection from a higher dimensional dynam-
ics, they are traditionally analyzed by using embedding
methods that attempt to recover the underlying dynamics.
The basic idea is to unfold the dynamics through a phase
space reconstruction of the attractor by embedding the time
series in a higher dimensional space using a suitable time
delay �38,45�. Consider a scalar time series measured in units
of sampling time �t defined by �x�k� ,k=1,2 ,3 , . . . ,N�.
Then, we can construct d-dimensional vectors defined by

��k= �x�k� ,x�k+�� , . . . ,x(k+ �d−1��)�; k=1, . . . , �N− �d−1���.
The delay time � suitable for the purpose is either obtained
from the autocorrelation function or from mutual information
�39�. Once the reconstructed attractor is obtained, the exis-
tence of converged values of correlation dimension and a
positive exponent is taken to be a signature of the underly-
ing chaotic dynamics. In real systems, most experimental
signals contain noise, which in this case is high. There are
several methods designed to cure the noise component
�39,40,46–48�. Usually, the cured data sets are then sub-
jected to further analysis.

The correlation integral, defined as the fraction of pairs of

points ��i and �� j whose distance is less than r, is given by

C�r� =
1

Np
�
i,j

��r − ���i − �� j�� , �16�

where ��¯� is the step function and Np is the number of
vector pairs summed. A window is imposed to exclude tem-
porally correlated points �39�. The method provides equiva-
lence between the reconstructed attractor and the original
attractor. It has been shown that a proper equivalence is pos-
sible if the time series is noise-free and long �49�. For a
self-similar attractor C�r��r�, where � is the correlation di-
mension �38�. Then, as d is increased, one expects to find a
convergence of the slope d ln C�r� /d ln r to a finite value in
the limit of small r. However, in practice, the scaling regime
is found at intermediate length scales due to the presence of
noise.

The existence of a positive Lyapunov exponent is consid-
ered as an unambiguous quantifier of chaotic dynamics.
However, the presence of a superposed noise component,
which in the present case is high, poses problems. In prin-
ciple, the noise component can be cured and then the
Lyapunov exponent calculated �39,40,46–48�. Here, we use
an algorithm that does not require preprocessing of the data;
it is designed to average out the influence of superposed
noise. The algorithm, which is an extension of Eckmann’s
algorithm, has been shown to work well for reasonably high
levels of noise in model systems as well as for short time
series. The method has been used to analyze experimental
time series as well �for details, see Refs. �50,51��.

In the conventional Eckmann algorithm �52�, a sequence
of tangent matrices is constructed that connect the initial

small difference vector ��i−�� j to evolved difference vectors
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��i+k−�� j+k, where k is the propagation time. In the algorithm,
the number of neighbors used is small, typically min�2d ,d
+4� contained in a spherical shell of size 
s. A simple modi-
fication of this is to use those neighbors falling between an
inner and outer radii 
i and 
0, respectively. Then, the inner
shell 
i is expected to act as a noise filter. However, so few
neighbors will not be adequate to average out the noise com-
ponent superposed on the signal. Thus, the modification we
effect is to allow more neighbors so that the noise statistics is
sampled properly �for details, see �50,51��. As the sum of the
exponents should be negative for a dissipative system, we
impose this as a constraint. In addition, we also demand the
existence of stable positive and zero exponents �a necessary
requirement for continuous time systems like AE� over a
finite range of shell sizes 
s. As a cross check, we have also
calculated the correlation integral and Lyapunov spectrum
using the TISEAN package as well �39�.

IV. DYNAMICS OF THE PEEL FRONT

A systematic study of the dynamics of the model is essen-
tial to understand the influence of the various parameters on
the spatiotemporal dynamics of the peel front, its connection
to intermittent peeling, and to the accompanying acoustic
emission. From Eq. �10�, it is clear that the acoustic energy
RAE is the spatial average of the local strain rate. As the peel
front patterns determine the nature of acoustic energy, a de-
tailed study of the dependence of the patterns on the relevant
parameters and on the pull velocity should help us to get
insight into the AE generation process during peeling.

A. General considerations on time scales and parameter values

We begin by making some general observations about the
various parameters and their influences. The dynamics of the
model is sensitive to the three time scales �reduced from four
due to scaling� determined by the parameters Cf, u, and Vs.
Cf is related to the ratio of inertial time of the tape mass to
that of roller inertia �see below�. The dissipation parameter
u reflects the rate at which the local strain rate relaxes. The
pull velocity Vs determines the duration over which all the
internal relaxations are allowed to occur. The range of Cf is
determined by the allowed values of the tape mass m and the
roller inertia I. Following our earlier studies, we vary I from
10−5 to 10−2 and m from 0.001 to 0.1. Thus, Cf can be varied
over a few orders of magnitude keeping one of them fixed.
For model calculations, the dissipation parameter is varied
from 0.001 to 1. �However, an order of magnitude estimate
shows that u�1, see below.� The range of Vs of interest is
determined by the instability domain, which is from 1 to
�12 as shown in Fig. 1�b�.

To appreciate the influence of inertial time scale of tape
mass parametrized by Cf, consider the low mass limit of the
ODE model �24�, which has been shown to lead to the DAE
model equations �22�. In this limit, the velocity jumps across
the two branches of the peel force function are abrupt with
infinite acceleration. However, finite tape mass introduces an
additional time scale that leads to jumps in vs to occur over a
finite time scale which in turn leads to the magnitude of the

velocity jumps. Indeed, the phase space trajectory need not
jump to the high velocity branch of ��vs�, as we shall see.
This can be better appreciated by considering the ODE
model �that ignores the spatial degrees of freedom�. Consider
the relevant ODE model equations �24� �in unscaled form�.

�̈ = −
v̇
R

+
R

I

cos �

�1 − cos ��
f�v� , �17�

mü =
1

�1 − cos ��
�f�v� − ku�1 − cos ��� , �18�

where � is shown in Fig. 1�a� and u is the displacement of
the contact point. m is the mass of the tape and k is the spring
constant of the tape. From Eqs. �17� and �18�, two inertial
time scales can be identified, one corresponding to the roller
inertia ��= �Rf / I�1/2 and another to that of the tape mass
�u= �k /m�1/2. �Note that k in Eq. �18� of the ODE model
corresponds to kt in the present model.� Thus, Cf in present
model is directly related to the ratio of these two inertial time
scales. Differentiating Eq. �1�, we get

v̇ + ü + R�̈ cos � = R�̇�̇ sin � . �19�

Equation �18� is the force balance equation. In the limit
m→0, we have the algebraic constraint f�v�=F�t��1
−cos ��t��. Differentiating this equation shows that v̇ di-
verges at points of maximum and minimum of the peel force
function f�v�. This demonstrates that in the low mass limit,
the orbits jump to the high velocity branch abruptly. Now
consider Eq. �19�, which relates the acceleration of the peel
point �v̇� and the acceleration of the displacement u �i.e., ü�
and �̈. This again is basically a force balance equation, as
can be seen by multiplying the equation by the tape mass m.
As the right-hand side is small, any increase in one of these
acceleration variables implies a decrease in the other vari-
ables. As low mass limit implies infinite acceleration of the
peel front �v̇� across the peel force function, finite mass im-
plies the velocity jumps across the peel force function are
reduced. It is worthwhile to note that the effect of inertial
time scale causing jumps across the unstable branch to occur
at a finite time scale is a general feature. This has been rec-
ognized and demonstrated experimentally in the context of
the PLC effect �53�.

Now consider estimating the order of magnitude of the
dissipative time scale. The unscaled dissipation parameter �u
is related to the fluid shear viscosity � �41� and thus an order
of magnitude estimate can be obtained. Typical values of �
for adhesives at low shear rates are �104–105 Pa s. Using
the approximate relation �=G�, where G is the effective
modulus and � the relaxation time, �u can be estimated using
typical dimensions of the peel front. It has been shown that
deformed peel front dimension is about 100 �m �54,55�, the
thickness of the adhesive is �50 �m, and the width of the
peel front �20 mm �width of the tape�. It is easy to show
that �u�10−3−10−2 J s. Thus, the range of u is �10−3

−10−4. As some of the numbers used are material-dependent,
this is just an order-of-magnitude estimate. For model stud-
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ies, the range of u is taken to be from 1 to 0.001. However,
we will not discuss the results for u=0.001 as these are
similar to 0.01.

Within the scope of the model, the model acoustic energy

given by RAE���= 1
2u�i�Ẋi+1− Ẋi�2 �in the discretized form�

depends on the nature of the local displacement rate. Based
on this relation, some general observations can be made on
the nature of RAE and its dependence on the peel front dy-
namics. From Eq. �14�, high u implies that the coupling
between neighboring sites is strong and hence the local dy-
namics at one spatial location has no freedom to deviate
from that of its neighbor. Thus, the displacement rate at a
point on the peel front cannot differ from that of its neighbor.
For the same reason, low u implies weak coupling between
displacement rates on neighboring points on the peel front,
which therefore can differ substantially. This clearly should
lead to a significantly more inhomogeneous peel velocity
profile. Based on the above arguments, high u should lead
to smooth peel front and consequently sharp bursts in the
model acoustic energy RAE that occurs during jumps between
the two branches of ��vs�. In contrast, when u is small, RAE
should be high as also spread out in time. However, as the
exact nature of the peel front pattern is sensitive to the values
of Cf, pull velocity Vs, and u, the nature of RAE depends on
all three time scales. Indeed, one should expect that the more
rapidly the peel front patterns change with time, the noisier
the model acoustic energy should be. This is one feature that
we hope to compare with experimental acoustic signals.

B. Results of the model

We have carried out extensive studies on the nature of the
dynamics for a wide range of values of the parameters stated
above. The peel front dynamics is analyzed by recording the
velocity-space-time patterns of the peel front, the phase plots
in the Xs-vs plane for an arbitrary spatial point on the peel
front, and the model acoustic energy dissipated RAE. �Unless
otherwise stated, these plots refer to steady state dynamics
after all the transients have died out.� Here, we present a few
representative solutions for different sets of parameters
within the range of interesting dynamics. Our analysis shows
that while the nature of the dynamics results from competing
influences of the three time scales, the dissipation parameter
u appears to have a significant influence on the spatiotem-
poral dynamics of the peel front.

1. Case (i), Cf=7.88—High (low) tape mass,
low (high) roller inertia

Given a value of Cf, there is a range of values of �m , I�. In
this case, the set of values are �0.1,10−3�, �0.01,10−4�, and
�0.001,10−5�. The dissipation coefficient is varied from u
=1 to 0.01. For high u=1.0, only smooth peeling is seen,
independent of the magnitude of the pull velocity. The peel
front switches between the low and high velocity branches of
the peel force function ��vs�. Plots of the smooth nature of
the entire peel front are shown in Figs. 2�a� and 2�b� for Vs

=1.48. Figure 2�a� shows the nature of the peel front when
the system is on the low velocity branch of ��vs�, i.e., the
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FIG. 2. �Color online� �a,b� Snapshots for Cf =7.88, Vs=1.48, and u=1.0. �a� A smooth peel front with small amplitude high frequency
oscillations due to finite roller inertia and �b� a smooth peel front. �c� Phase plot for an arbitrary spatial point on the peel front. Bold line
represents ��vs�. �d� Model acoustic energy plot. �e,f� Snapshots for Cf =7.88, Vs=1.48, and u=0.1. �Rugged peel front and the onset of
stuck-peeled configuration.�
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local velocities of all spatial elements follow the AB branch
of ��vs�. The small amplitude synchronous high frequency
oscillation of the entire peel front results from the roller in-
ertia. �Compare the values of vs in the two figures.� A phase
plot in the Xs-vs plane for an arbitrary point on the peel front
is shown in Fig. 2�c�. The small amplitude oscillation of the
peel front shown in Fig. 2�a� corresponds to the velocity
oscillations in the phase plot �Fig. 2�c��. As high Cf implies
relatively low values of I, it can be shown �on lines similar to
Ref. �22�� that the orbit sticks to the stationary branches
�slow manifold� of the peel force function ��vs� jumping
between the branches only at the limit of stability typical of
relaxation oscillations. The corresponding model acoustic
energy RAE��� shows a sequence of small amplitude spikes
corresponding to the small amplitude oscillations arising
from the roller inertia �Fig. 2�d�� followed by large bursts
that occur at regular intervals. The bursts result from the peel
front jumping from the stuck to the peeled state and back.
Note that the duration of the bursts is short compared to the
duration between them.

However, as we decrease u to 0.1 keeping Vs=1.48, we
observe rugged and stuck-peeled configurations. The rugged
pattern is seen when the system is on the AB branch of
��vs�. Even so, on reaching the limit of stability, the entire
contact line peels nearly at the same time as shown in Fig.
2�e�. But once it jumps to the high velocity branch CD of
��vs�, the peel front that has nearly uniform peel velocity
commensurate with that of the right branch of ��vs� becomes
unstable and breaks up into stuck and peeled segments as
shown in Fig. 2�f�. The width of these segments increases in
time with a concomitant decrease in the magnitude of the
velocity jumps of peeled segments; eventually the entire peel
front goes into a stuck state. Then, the cycle restarts with the
peel front switching between the rugged and stuck-peeled
�SP� states. The phase plot is similar to that for u=1 again
sticking to the slow manifold. The model acoustic energy
dissipated RAE is also similar to that for u=1 except that the

large bursts are comparatively broader, as should be expected
due to the presence of stuck-peeled configurations that con-
tribute to large changes in the local velocity.

As we decrease u to 0.01, the observed patterns are simi-
lar to those for u=0.1 but the sequence of the peel front
patterns is different. Starting with a low velocity configura-
tion that is even more rugged compared to that for u=0.1 as
shown in Fig. 3�a�, the peel process starts with a small stuck
segment getting peeled �Fig. 3�b��. Thereafter, several stuck
segments peel out leading to a stuck-peeled pattern as shown
in Fig. 3�c�. Eventually, the entire peel front peels out leav-
ing a nearly uniform peeled state as shown in Fig. 3�d� �with
a velocity commensurate with the high velocity branch of
��vs��. This is again destabilized with some segments of the
peel front getting stuck as in the case of u=0.1 �similar to
Fig. 2�f��. The number of such stuck segments increases with
time. Eventually, the whole peel front goes into a stuck state.
The cycle restarts. The phase plot is similar to u=0.1 and 1.
Indeed, for a given Cf, independent of u, the phase plot
changes only when Vs is increased. But RAE shows broader
bursts compared to u=0.1 as the corresponding stuck-
peeled configurations last longer. Even so, the duration of the
SP configurations in a cycle is short, i.e., the duration of the
bursts is short compared to the duration between them.

Now we consider the influence of increasing the pull ve-
locity �keeping Cf fixed at 7.88�, which in turn should leave
less time for internal relaxational mechanisms to operate.
Intuitively one should expect that some patterns observed for
low Vs may not be seen for higher values of Vs. The u=1
case is uninteresting for the reasons stated above. But, reduc-
ing u to 0.1 does provide some degree of freedom for the
local dynamics to operate at each point. Even so, for Vs

=2.48, the peel front switches between a SP configuration
with most segments momentarily in the stuck state �similar
to Fig. 3�b�� and a configuration that has several stuck-peeled
segments �similar to Fig. 3�c��. The corresponding Xs-vs

phase plot shows that the orbit jumps slightly beyond the
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FIG. 3. �Color online� �a�–�d� Snapshots during the peeling process for Cf =7.88,Vs=1.48, and u=0.01: �a� highly rugged peel front
when the system is on the left branch of ��vs�, �b� the onset of peel process, �c� stuck-peeled configuration, and �d� resulting nearly uniform
peeled state.
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upper value of ��vs� and jumps back from the right branch
even before reaching the minimum of ��vs� �not shown�. As
we decrease u to 0.01, the rugged configuration seen for
Vs=1.48 is no longer seen and only SP configurations are
observed, as shown in Fig. 4�a�. The SP configurations are
dynamic in the sense that segments that are in stuck state at
one time become unstuck at a later time and vice versa. For
this case �Cf =7.88, Vs=2.48, u=0.01�, these rapid changes
occur over a short time scale. Consequently, the model
acoustic energy is quite noisy, as shown in Fig. 4�b�, but has
a noticeable periodic component. The points of minima cor-
respond to configurations that have fewer peeled segments
compared to those near the peak of RAE. The phase plot in
the Xs-vs plane is limited to the upper part of ��vs�. Even as
the phase plots for any two spatial points look similar, there
is a phase difference. For instance, at any given time, the
phase point of a stuck segment will be on the left branch
while that for a peeled point will be on the right branch.

As we increase Vs to 4.48 �keeping Cf at 7.88�, there is
even less time for peel front inhomogeneities to relax, and
thus we observe a smooth peeling for u=1 and also for 0.1.
As we decrease u to 0.01, we see only SP patterns �not
shown but similar to Fig. 4�a��. The corresponding Xs-vs

phase plot for an arbitrary point on the peel front shown in
Fig. 4�c� is confined to the top of ��vs�. The corresponding
RAE is noisy and irregular, as shown in Fig. 4�d�. However,
when we increase Vs to 5.48, initially, one does observe the
patterns switching between rugged and SP configurations. If
we wait long enough, we observe only SP configurations that

are different from those for lower Vs. In this case, the stuck
and peeled segments are long-lived. A top view of the SP
pattern is shown in Fig. 4�e�. The phase space orbit in the
Xs-vs plot is pushed beyond the upper limit of ��vs�. The
energy dissipated is quite regular �but aperiodic�, unlike that
for lower pull velocities as shown in Fig. 4�f�. This regularity
is clearly due to the long-lived nature of these SP configura-
tions. The long-lived nature of the SP configurations for high
pull velocity is a general feature, i.e., the duration over
which the stuck segments remain stuck �peeled segments re-
main peeled� increases as we increase the pull velocity. The
dynamics is no longer interesting beyond Vs=6.48 as only
smooth peeling is seen.

2. Case (ii), Cf=0.788—High (and low) tape mass,
high (and intermediate) roller inertia

For this value of Cf, the allowed set of values of �m , I� is
�0.1,10−2�, �0.01,10−3� and �0.001,10−4�. The dynamics is
more interesting for this case as there is a scope for compe-
tition among the three time scales.

We first study the dynamics keeping Vs=1.48 and varying
the dissipation parameter. For u=1.0, the uniform nature of
the peel front seen for Cf =7.88 disappears and even for short
times, stuck-peeled configurations are seen. The peel front
patterns stabilize to stuck-peeled configurations, as shown in
Figs. 5�a� and 5�b�. As can be seen, these SP patterns have
only a few stuck or peeled segments with moderate velocity
jumps and smooth variation along the peel front unlike the
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FIG. 4. �Color online� �a,b� Snapshot of a stuck-peeled configuration and model acoustic energy, respectively, for Cf =7.88, u=0.01, and
Vs=2.48. �c,d� Phase plot and model acoustic energy plot, respectively, for Cf =7.88, Vs=4.48, and u=0.01. �e� Snapshot of long-lived
stuck-peeled configuration for Cf =7.88, Vs=5.48, and u=0.01, and �f� the associated model acoustic energy.
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SP configurations discussed earlier. �Note that the SP con-
figuration in Fig. 5�b� has more stuck segments compared to
Fig. 5�a�.� The moderate velocity jumps can be understood
by noting that the phase space orbit never visits the high
velocity branch of ��vs�, as can be seen from Fig. 5�c�. It is
interesting to note that the trajectory stays close to the un-
stable branch of ��vs� even after attempting to jump from the
low velocity branch. Such orbits are reminiscent of canard-
type solutions �56�. The trajectory is irregular and is sugges-
tive of the spatiotemporal chaotic nature of the peel front.
The energy dissipated RAE shown in Fig. 5�d� is continuous
and irregular due to the dynamic SP pattern, as should be
expected, but there is a noticeable periodic component. The
rough periodicity of RAE can be traced to the fact that the
peel front configurations switch between patterns with more
stuck segments and fewer stuck segments. �From the num-

bers shown on the x axis, Fig. 5�a� can be identified with the
minimum and Fig. 5�b� with the peak of RAE in Fig. 5�d�. See
the marked arrows as well.�

As we decrease u to 0.1, the SP configurations observed
have more stuck and peeled segments compared to u=1
�compare Fig. 6�a� with Fig. 5�a��. However, the magnitude
of the velocity jumps remains moderate, as in the previous
case. This is again due to the fact that the orbit never visits
the high velocity branch of ��vs�. �Recall that given a value
of Cf, the phase plot remains the same for different u values
as long as Vs is fixed.� Indeed, for this value of Cf =0.788,
the orbit never jumping to the high velocity branch is a con-
sequence of finite inertia of the tape mass compared to that
of the roller inertia as discussed earlier. For this case, the
model acoustic energy RAE is also irregular and continuous,
as shown in Fig. 6�b� with a noticeable periodic component.

0
25

50

327.6

328.4
0

3

5

position
time

ve
lo
cit

y

(a)

0
25

50

337.653

337.73
0

4

7

position
time

ve
lo
cit

y

(b)

10
−3

10
−1

10
10.4

1

v
i
s

X
is

(c)

200 300 400 500
0

6x 10
−3

time

R ae

(d)

FIG. 5. �Color online� �a�,�b� Snapshots of stuck-peeled configurations for Cf =0.788, Vs=1.48, and u=1.0. Note that �a� has fewer
peeled segments compared to �b�. �c� Phase plot for an arbitrary point on the peel front, and �d� model acoustic energy plot.
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Now, if we decrease u further to 0.01, the peel front pattern
displays an increased number of stuck and peeled segments
with each stuck segment having only a few contiguous stuck
points, as can be seen from Fig. 6�c�. Note also that there is
a large dispersion in the magnitudes of the velocity jumps of
the peeled segments even as the largest one is significantly
smaller than the value of the CD branch of ��vs�. As can be
seen from Fig. 6�c�, even though the pattern is dynamic, the
segments that are stuck are barely so. Thus, the configuration
shown in Fig. 6�c� gives the feeling of a critically poised
state. The corresponding Xs-vs phase plot �similar to that
shown in Fig. 5�c�� is irregular and possibly suggestive of the
spatiotemporal chaotic nature of the peel front. The acoustic
energy RAE is very irregular without any trace of periodicity,
as shown in Fig. 6�d�.

We now consider the influence of increasing the pull ve-
locity Vs. As we increase Vs to 2.48, the spatiotemporal pat-
terns seen for u=1.0, 0.1, and 0.01 are slightly different
from those for Vs=1.48. For u=1.0, the peel process goes
through a cycle of configurations shown in Figs. 7�a� and
7�b�. It is clear that Fig. 7�a� has more segments in the stuck
state while Fig. 7�b� is the usual kind of SP configuration
except that the stuck and peel segments are fewer. For this
case, the stuck and peeled segments last longer than those for
Vs=1.48. The corresponding RAE for each u exhibits noisy
bursts overriding a periodic component. A typical plot for
u=1 is shown in Fig. 7�c�. From the time labels as also the
arrows shown, the minima and maxima in RAE can be iden-
tified with Figs. 7�a� and 7�b�, respectively. The orbit in the
Xs-vs plane moves into regions much beyond the values al-
lowed by ��vs�, as is clear from Fig. 7�d�. The phase plots
for u=0.1 and 0.01 are similar to this case.

For u=0.1 also, the peel front pattern goes through a
cycle of stuck-peeled configurations �with more stuck and
peeled segments than for u=1.0� and stuck segments �simi-
lar to Fig. 7�a��. Yet, the energy dissipated RAE is similar to
Fig. 7�c� for u=1.0, which is surprising considering that
there are more stuck and peeled segments compared to the

u=1 case. This can be traced to the long-lived nature of the
stuck or peeled configurations that hardly change over a
cycle �as in the case of Cf =7.88, Vs=5.48, and u=0.01; see
Fig. 4�e��. The peel process is similar even for u=0.01.

As we increase the peel velocity to 4.48, the influence of
this time scale on the peel front pattern is discernable even
for u=1.0. The spatiotemporal patterns of the peel front
switch sequentially from the nowhere stuck configuration
shown in Fig. 8�a� to the stuck-peeled configuration with few
stuck and peeled segments shown in Fig. 8�b�. Note that
there are very few stuck and peeled segments. The corre-
sponding RAE exhibits a noisy periodic pattern similar to Fig.
7�c� for Vs=2.48. The Xs-vs phase plot in Fig. 8�c� shows
that the orbit can move much beyond the values allowed by
��vs�. As we decrease u to 0.1, the nowhere stuck configu-
ration �Fig. 8�a�� is replaced by a partly stuck, partly peeled
configuration and a SP configuration. For the u=1.0 case
�Fig. 8�c��, the Xs-vs phase plot is slightly different as the
orbit makes several loops before it jumps to a low velocity
branch without visiting the high velocity branch of ��vs�.
The nature of RAE is still noisy and periodic similar to Fig.
7�c�. As we decrease u to 0.01, the peel process goes
through SP configurations shown in Figs. 8�d� and 8�e�. Note
that Fig. 8�e� has large dispersion in the magnitude of veloc-
ity jumps of the peeled segments compared to that in Fig.
8�d�. It is worth emphasizing that the increase in the number
of stuck and peeled segments with a decrease in u is a
general feature. Despite the higher number of stuck and
peeled segments, RAE for =0.01 is similar to that for u
=1.0 as these peel front configurations are long-lived, which
again is a general feature observed at high pull velocities.
Finally, it should be stated that for Cf =0.788, in general the
velocity variation along the peel front is much smoother
compared to other values of Cf. The dynamics is uninterest-
ing beyond Vs=7.48 as only smooth peeling is seen.

3. Case (iii), Cf=0.00788—Low tape mass and high roller inertia

For this value of Cf, there is just one set of values of tape
mass and roller inertia, namely m=0.001 and I=0.01. As the
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tape mass is low, this also corresponds to the DAE type of
solutions for each spatial point. Thus, the velocity jumps
between the two branches of the peel force function will
always be abrupt with the roller inertia playing a major role
in allowing the orbits to jump between the branches of the
peel force function as demonstrated earlier �22�.

Consider the influence of the dissipation parameter u
keeping Vs=1.48. For u=1, peeling is uniform and thus the
whole peel front switches between the two branches of the
peel force function. The acoustic energy shows a bunch of
seven double spikes that appear at regular interval as shown
in Fig. 9�a�. �The number of spikes is correlated with the
number of cascading loops seen in the Xs-vs phase plot, see
below.� As we decrease u to 0.01, the peel front goes
through a cycle of patterns with only a few peeled segments
and those with a large number of stuck-peeled segments as
shown in Figs. 9�b� and 9�c�, respectively. The phase plot in
the Xs-vs plane of an arbitrary point on the peel front jumps
between the AB to CD branches of ��vs�. As shown in Fig.
9�d�, in a cycle, the trajectory starting at the highest value of
��vs� stays on CD for a significantly shorter time compared
to that on the left branch. The orbit then cascades down
through a series of back and forth jumps between the two
branches of ��vs�. �For Vs=1.48, independent of the u
value, the nature of the phase plot is the same with seven
loops.�

The corresponding model acoustic energy consists of rap-
idly fluctuating time series with an overall convex envelope
of bursts separated by a quiescent state as shown in Fig. 9�e�.
�Contrast this with Fig. 9�a� for u=1.� From the time labels

in Figs. 9�b� and 9�c�, both configurations belong to the re-
gion within the bursts �Fig. 9�e��. To understand this complex
pattern of bursts in RAE, we have looked at the fine structure
of each of these bursts along with the evolution of the asso-
ciated configurations. One such plot is shown in Fig. 9�f�,
which shows that fine structure consists of seven bursts
within each convex envelope. These seven bursts can be cor-
related with the seven loops in the phase plot shown in Fig.
9�d�. The time interval marked LM in the phase plot corre-
sponds largely to the stuck configuration �not shown� and
hence can be easily identified with the quiescent region in
RAE. Following the peel front patterns continuously, it is pos-
sible to identify the sequence of configurations that leads to
the substructure shown in RAE �Fig. 9�f��. For instance, the
loop marked PQRST in the Xs-vs plot corresponds to the burst
between P and T in Fig. 9�f�. During this period, the con-
figuration at P is largely in the stuck state �as in Fig. 9�b��,
which gradually evolves with more and more segments peel-
ing out �Fig. 9�c�� as the trajectory moves from P→Q→R
→S. As the number of stuck and peeled segments reaches a
maximum, RAE reaches the peek region. Then, during the
interval corresponding to S to T, the number of peeled seg-
ments decreases abruptly. Thereafter, the next cycle of con-
figurations �corresponding to the next loop in the phases
plot� ensues.

As we increase the pull velocity, the peel front is smooth
for u=1.0 as also for 0.1 for the entire range of pull speeds.
However, for u=0.01, as we increase Vs to 2.48, the peel
process goes through a cycle of SP configurations shown in
Figs. 10�a� and 10�b�. Note that there is a large dispersion in
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the jump velocities as is clear from Fig. 10�a�. The corre-
sponding RAE shows a rapidly fluctuating triangular envelope
of bursts with no quiescent region seen for Vs=1.48 case.
This is shown in Fig. 10�c�. The corresponding phase plot is
similar to Fig. 9�d� but has 12 loops. In addition, the value of
the upper loop extends far beyond that allowed by ��vs�. We
also see a fine structure similar to that in Fig. 9�e�. As in the
previous case, it is possible to identify configurations that
correspond to minima and near the maxima of RAE. As we
increase Vs further to 4.48, only SP configurations are seen.
The energy dissipated RAE shows continuous bursts overrid-
ing a sawtooth form as shown in Fig. 11�b�. The Xs-vs phase
plot shows large excursions way beyond the peel force func-
tion values as shown in Fig. 11�c�.

A general comment may be relevant regarding large ex-
cursions of the trajectory in the phase plot Xs-vs as we in-
crease the pull velocity. This is easily explained for the low
Cf �low tape mass, high roller inertia�. It is clear from Eq.
�18� that m→0 and we have F�t�� f�v�

�1+sin ��t�� . As ��t� can
take on positive and negative values, one can see Fmax and
Fmin are determined by minimum �negative� and maximum
values of sin � as argued in �22�. It is possible to extend this
argument to the finite tape mass case. Finally, it must
be stated that the dynamics is no longer interesting beyond
Vs=7.48.

4. Spatiotemporal chaotic dynamics

As discussed above, there are several sets of parameter
values for which the phase plots are irregular, which may
suggest the possibility of spatiotemporal chaotic dynamics.
To verify this, we have calculated the largest Lyapunov ex-
ponent �LLE� for all the cases using the model equations.
�The transient solutions for the first 2000 time units have
been ignored for calculating the LLE.� Figure 12 shows a
plot of the largest Lyapunov exponent for Cf =0.788 and u
=0.01 for various pull speeds. The value of LLE for Vs

=5.48 is close to zero �not displayed in the figure�. As can be
seen, the LLE is positive, being largest for Vs=1.48 decreas-
ing to near zero for Vs=5.48. Table I shows the values of
LLE for various parameter values for which the spatiotem-
poral dynamics has been detected. From this we conclude
that the dynamics of the peel front is spatiotemporally cha-
otic for a range of parameters values.

V. ANALYSIS OF AE SIGNALS

A. Statistical analysis of AE signals

The acoustic emission data obtained from experiments are
fluctuating and noisy only within the domain where the peel
process is intermittent from 0.2 to 7.6 cm /s. As is known
from early experiments �6�, force wave forms change as the
traction velocity is increased. Correspondingly, the nature of
the AE signals also changes with the traction velocity. At low
traction velocities, the AE signals have a burstlike character
appearing at nearly regular intervals separated by an oscilla-
tory decay of the amplitudes. These bursts are correlated
with the stick-slip events. With increasing traction velocity,
the bursts become increasingly irregular and continuous. Ex-
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amples of burst and continuous type of AE time series are
shown in Figs. 13�a� and 13�b�.

As shown in the previous section, the nature of the model
AE signal depends on parameter values. In general, RAE can
be of noisy burst type overriding a periodic component, con-
tinuous and irregular, rapidly fluctuating triangular envelope
of bursts or simply a set of spikes. Clearly, interesting cases
for comparison with the experimental AE signals are those in
which RAE is continuous and noisy. The simplest quantity to
compare is the nature of the model acoustic signal with the
energy of the experimental AE signal �i.e., square the ampli-
tude�. Figures 13�c� and 13�d� show a comparison between
the model acoustic signal for Cf =7.88, u=0.01, and Vs

=1.48, and the energy of the experimental signal for V
=0.4 cm /s. Both show burst-type emission. As another ex-
ample, Figs. 13�e� and 13�f� show, respectively, the continu-

ous model signal �for Cf =7.88, u=0.01, and Vs=4.48� and
experimental acoustic energy for V=6.4 cm /s.

Given an experimental time series, the simplest statistical
quantity to compute is the statistics of events. The definition
of events depends on the physical situation, which in the case
of the AE signal may be the time interval between the bursts
of AE, the amplitude of bursts, etc. Indeed, the former has
been computed �7�. Here we compute the distribution of the
amplitudes of the AE signals. The difference between the
maximum and next minimum, denoted by �A, can be taken
to be a measure of the amplitude of the AE signal. �In ex-
periments, it is measured by setting a cutoff and measuring
all amplitudes larger than the cutoff.� We have computed the
distribution of the amplitudes D��A� for all the 38 data files
for pull velocities starting from 0.2 to 7.6 cm /s. Surpris-
ingly, we find only power law distributions for all the data
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files, i.e., D��A���A−mA; we do not find peaked distribu-
tions. For small traction velocities, we find a single power
law crossing over to a two-stage power law for high traction
velocities. A typical single power law distribution for V
=1.6 cm /s is shown in Fig. 14�a� with an exponent mA
=2.15. Figure 14�b� shows a two-stage power law for high
velocity V=5.0 cm /s. The exponent values are mA=0.32 and
3.0, respectively, for small and large amplitude regimes. The
transition from a single- to two-stage power law distribution
occurs with the deviation for small values seen in Fig. 14�b�
becoming more dominant with an increase in the pull veloc-
ity. A two-stage power law �over one order of magnitude
range� is first observed for V=3.0 cm /s. The exponent val-
ues are functions of the pull velocity. Table II shows the
exponent values for a selected set of pull velocities. Even
though statistical features are easy to calculate, they are suf-
ficiently discriminating. The analysis will be useful while
comparing the cured data files as also with the statistics of
model acoustic energy signals.

These results may be compared with the statistics of the
amplitude of the model energy bursts RAE, i.e., from the
maximum to the next minimum. Denoting �RAE to be the
amplitude of RAE���, let D��RAE� be the distribution of the

amplitude of RAE. For Cf =0.00788, only the u=0.01 case is
interesting �see Fig. 10�d� corresponding to Vs=2.48�. To
determine D��RAE�, we use long time series �typically �105

points in units of the integration step�. For this case, we find
a two-stage power law as shown in Fig. 14�d�, i.e.,
D��RAE���RAE

−mE with the exponents mE�0.60 and 2.0 for
the small and large amplitude regimes, respectively. Figure
14�c� shows an example of a single power law for Cf
=0.788, u=0.1, and Vs=1.48. The exponent value is mE
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FIG. 12. Largest Lyapunov exponents of the model for Cf

=0.788 and u=0.01: �a� Vs=1.48, �b� Vs=2.48, and �c� Vs=4.48.

TABLE I. Largest Lyapunov exponent for the model for various
parameter values. For all Cf, the LLE reaches a value near zero for
Vs=5.48.

Cf Vs u LLE

7.88 2.48 0.01 0.110

4.48 0.01 0.102

0.788 1.48 1.00 0.095

0.10 0.120

0.01 0.148

0.788 2.48 1.00 0.068

0.10 0.090

0.01 0.139

0.788 4.48 1.00 0.028

0.10 0.030

0.01 0.035

0.00788 1.48 0.01 0.105

2.48 0.01 0.180

4.48 0.01 0.224
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FIG. 13. �a�,�b� Raw AE signal for V=1.6 and 7.6 cm /s, respec-
tively. �c� Burstlike model acoustic energy plot for Cf =7.88, Vs

=1.48, and u=0.01. �d� Burstlike experimental acoustic energy for
V=0.4 cm /s. �e� Continuous model acoustic energy plot for Cf

=7.88, Vs=4.48, and u=0.01. �f� Continuous experimental acous-
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=0.7. To compare, we note that the experimental time series
refers to the amplitude of the AE signals while the model
signal RAE is the energy. Thus, the two exponents are related
through mE= �mA+1� /2. Using the value of mE shown in Fig.
14�d�, we obtain mA1=0.2 for the exponent corresponding to
the small amplitude regime �of the AE signal� and mA2=3.0
for large amplitudes. Clearly, the values are in reasonable
agreement with the exponent values for the experimental sig-
nals �Fig. 14�b��. Unlike the experimental signal where the
scaling regime is good for all values of the pull velocity, for
the model acoustic energy RAE, the distributions for �RAE
show a power law statistics �of at least one order of scaling
regime� only for a certain sets of parameter values. Table III
lists the exponent values wherever the power law distribution
is seen. For high and low values of Cf, we find two-stage
power law distributions. However, for the intermediate

Cf�0.788�, only a single-stage power law is found. It is in-
teresting to note that the power law generated here is purely
of dynamical origin.

B. Dynamical analysis of AE time series

In Sec. IV, we showed that the peel front patterns for
several sets of parameters are spatiotemporally chaotic. More
importantly, the model acoustic energy is quite irregular even
as it is of dynamical origin. This suggests the possibility that
the experimental AE signals could be chaotic. However, of-
ten time series have an undesirable systematic component,
which needs to be removed from the original data. For in-
stance, in the PLC effect, the stress-strain time series has an
overall increasing stress arising from the work hardening
component of the stress �50�, which needs to be subtracted.
In the present case, the experimental data for high pull ve-
locities do show a background variation. A simple way of
eliminating this background component is to use a window
averaging and subtract this component from the raw data.
Moreover, as stated in the Introduction, the experimental AE
data are quite noisy and therefore it is necessary to cure the
data �using standard noise reduction techniques �39�� before
subjecting them to further analysis. Simple visual checks for
the existence of chaos such as phase plots, power spectrum,
etc. have been carried out. We have also used singular value
decomposition, false neighbor search, etc. Figures 15�a� and
15�b� show the raw and cured data, respectively, for V
=5.0 cm /s. Clearly, the dominant features of the time series
are retained except that small amplitude fluctuations are re-
duced or washed out �39�. Statistical features like the distri-
bution function for the amplitude of the AE signals, power
spectrum, etc., are not altered. For instance, the two-stage
power law distribution for the amplitude of AE signals for
the raw data �shown in Fig. 14�b�� is retained except that the
exponent value for the small amplitude regime is reduced
from 0.32 to 0.24 without altering the exponent correspond-

TABLE II. Statistical and dynamical invariants for the experi-
mental AE signals for typical traction velocities. The second and
third columns show power law exponents mA1 and mA2 correspond-
ing to small and large amplitudes. When only a single power law is
seen, mA2 is the exponent value. The fourth to sixth columns list the
values of the correlation dimension �, the largest exponent �1, and
Kaplan-Yorke dimension DKY obtained from dynamical analysis of
the AE signals. NC corresponds to nonchaotic dynamics where we
did not find any convergence of the correlation dimension.

V �cm/s� mA1 mA2 � �1 DKY

1.0 2.00 NC NC NC

1.6 2.15 NC NC NC

3.0 0.31 2.26 NC NC NC

3.8 0.30 2.75 2.80 1.70 2.94

5.0 0.32 3.00 2.70 1.73 2.96

6.2 0.27 3.00 2.55 1.54 2.84

7.4 0.30 2.99 NC NC NC

TABLE III. Statistical and dynamical quantities for the model acoustic signal. Columns 4 and 5 show the
power law exponents. Columns 6 to 8 list the correlation dimension, positive exponent and Lyapunov
dimension, respectively.

Cf Vs u mE1 mE2 � �1 DKY

7.88 2.48 0.01 0.45 2.10 2.40 1.05 2.90

4.48 0.01 0.65 1.97 2.35 0.46 2.74

0.788 1.48 1.00 0.55 2.45 1.53 2.74

0.10 0.70 2.49 1.80 2.77

0.01 0.65 2.15 1.85 2.45

0.788 2.48 1.00 1.00 2.45 1.50 2.48

0.10 0.90 2.54 1.78 2.59

0.01 0.67 2.45 1.59 2.86

0.788 4.48 1.00 0.70 2.55 1.48 2.86

0.10 0.60 2.35 1.57 2.53

0.01 0.72 2.50 1.50 2.52

0.00788 1.48 0.01 0.74 2.0 NC NC NC

2.48 0.01 0.60 2.0 2.20 0.32 2.40

4.48 0.01 0.75 2.0 2.70 0.13 2.76

KUMAR, DE, AND ANANTHAKRISHNA PHYSICAL REVIEW E 78, 066119 �2008�

066119-16



ing to large amplitudes. This reduction is understandable as
small amplitude fluctuations are affected during curing.

The cured data are used to calculate the correlation di-
mension for all the data files. However, for calculating the
Lyapunov spectrum using our algorithm, raw data are ad-
equate as our algorithm is designed to process noisy data. �In
contrast, calculating the Lyapunov spectrum using the
TISEAN package requires the cured data.� To optimize the
computational time, all our calculations are carried out using
one-fifth of each data set as each file contains a large number
of points ��106 points�, and there are 38 data sets.

Typical autocorrelation time is about four units in sam-
pling time. However, using a smaller value of �=1, we have
calculated the correlation integral C�r� for all the data files.
Converged values of correlation dimension are seen only in
the region of pull velocities in the subinterval 3.8–6.2 cm /s.
A log-log plot of C�r� for the pull velocity 3.8 cm /s is
shown in Fig. 15�c� for d=9 to 13. A scaling regime of more
than three orders of magnitude is seen with ��2.80�0.05.
This is at the beginning of the chaotic window.

We have calculated the Lyapunov spectrum using our al-
gorithm. The Lyapunov spectrum for V=3.8 cm /s is shown
in Fig. 15�d�. �The outer shell radius is kept at 
o=0.065.�
Note that the second exponent is close to zero, as should be
expected for continuous flow systems. Using the spectrum,
we have calculated the Kaplan-Yorke �KY� dimension �also
called Lyapunov dimension� DKY using the relation DKY= j

+
�i=1

j �i

�� j+1� ; �i=1
j �i�0; �i=1

j+1�i�0. The value so obtained in each
case should be consistent with that obtained from the corre-

lation integral. For the case shown in Fig. 15�d�, we get
DKY=2+1.70 /1.81=2.94, consistent with �=2.80. �Typical
error bars on the first three Lyapunov exponents are �0.01,
�0.005, and �0.05. Thus the errors in DKY values are
�0.05.�

As an example of a converged value of correlation dimen-
sion near the upper end of the chaotic domain, a log-log plot
of C�r� for Vs=5.0 cm /s is shown in Fig. 15�e� with �
=2.73�0.05 for d=7 to 10. Again, the scaling regime is
seen to be nearly three orders of magnitude. The Lyapunov
spectrum for the data file is shown in Fig. 15�f�. The calcu-
lated Lyapunov dimension from the spectrum is DKY=2
+1.73 /1.80=2.96, which is again consistent with �=2.73.

The values of � for all the files are found to be in the
range 2.55 to 2.85�0.05, as can be seen from Table II. We
have calculated the Lyapunov spectrum for the full range of
traction velocities and we find �stable� positive and zero ex-
ponents only in the region 3.8–6.2 cm /s, consistent with the
range of converged values of �, as can be seen from Table II.
The corresponding values of DKY are in the range of 2.7–3.0.
We have also calculated the Lyapunov spectrum using the
TISEAN package using cured files. The DKY values obtained
from the TISEAN package are uniformly closer to the � val-
ues, typically DKY=�+0.1. Finally, we note that the positive
exponent decreases toward the end of the chaotic domain
�6.2 cm /s�. These results �see Table II� show unambiguously
that the underlying dynamics responsible for AE during peel-
ing is chaotic in a midrange of pull speeds.

In order to compare the low dimensional chaotic nature of
the experimental AE signals with the model acoustic signal,
we have analyzed the low dimensional dynamics of RAE���
using the embedding procedure after subtracting the periodic
component.

We have computed the correlation dimension and
Lyapunov spectrum for the entire instability domain. A log-
log plot of the C�r� is shown in Fig. 16�a� for d=5 to 8. The
convergence over more than three orders of magnitude is
clear. The value of �=2.20�0.05. For this file, we find
stable positive and zero exponents for a range of 
o values. A
plot of the spectrum for Cf =0.00788, u=0.01, and Vs

=2.48 �
o=0.08� is shown in Fig. 16�b�. Using this, we get
DKY=2+0.32 /0.77=2.4, which is again consistent with �
=2.2�0.02.

We have calculated both correlation dimension and
Lyapunov spectrum of RAE for a range of values of the pa-
rameters. For each Cf, we find converged values of � and
DKY within a window of pull speeds. Generally, the range of
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FIG. 15. �a�,�b� Raw and cured AE signal, respectively, for V
=5.0 cm /s. �c� Correlation integral for pull velocity 3.8 cm /s for
d=9 to 13. Dashed lines are a guide to the eye. �d� Lyapunov
spectrum for the same data file. �e� Correlation integral for pull
velocity 5.0 cm /s from d=7 to 10. Dashed lines are a guide to the
eye. �f� Lyapunov spectrum of the AE signals for traction velocity
5.0 cm /s.
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guide to the eye. �b� The corresponding Lyapunov spectrum for
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� is between 2.15 and 2.70 while DKY is in the range 2.4–
2.90. Table III shows the values of correlation dimension and
DKY for various sets of parameter values. It is interesting to
note that the magnitude of the largest exponent for the model
AE signal also decreases as we increase the pull velocity, a
feature displayed by the experimental time series as well.

VI. SUMMARY AND CONCLUSIONS

In summary, the present investigation is an attempt to un-
derstand the origin of the intermittent peeling of an adhesive
tape and its connection to acoustic emission. At the concep-
tual level, we have established a relationship between stick-
slip dynamics and the acoustic energy; the latter depends on
the local strain rate �41�, which in turn is controlled by the
roughness of the peel front. As the model is fully dynamical,
one basic result that emerges is that the model acoustic en-
ergy is controlled by the nature of spatiotemporal dynamics
of the peel front. Further, even as the model acoustic emis-
sion is a dynamical quantity, the nature of RAE turns out to be
quite noisy, depending on the possible interplay of different
time scales in the model. Thus, the highly noisy nature of the
experimental signals need not necessarily imply the stochas-
tic origin of the AE signal; instead, they could be of deter-
ministic origin. This motivated us to carry out a detailed
analysis of statistical and dynamical features of the experi-
mental AE signals. Despite the high noise content, we have
been able to demonstrate the existence of finite correlation
dimension and positive Lyapunov exponent for a window of
pull speeds. The Kaplan-Yorke dimension �for various trac-
tion velocities� calculated from the Lyapunov spectrum is
consistent with the value obtained from the correlation inte-
gral. Thus, the analysis establishes unambiguously the deter-
ministic chaotic nature of the experimental AE signals. Inter-
estingly, the largest Lyapunov exponent shows a decreasing
trend toward the end of the chaotic window, a feature dis-
played by the model acoustic signal as well. The work also
addresses the general problem of extracting dynamical infor-
mation from noisy AE signals. A similar analysis of the
model acoustic energy shows that RAE is chaotic for a range
of parameter values. More importantly, several qualitative
features of the experimental AE signals such as the statistics
of the signals and the change from burst to continuous type
with increase in the pull velocity are also displayed by RAE.
The observed two-stage power law distribution for the ex-
perimental AE signals �Fig. 14�b�� is reproduced by the
model �Fig. 14�d��. It must be emphasized that this power
law distribution for the amplitudes is completely of dynami-
cal origin. This result should be of general interest in the
context of dynamical systems as there are very few models
that generate power laws purely from dynamics. The only
other example known to the authors is that of the PLC effect
where the amplitude of the stress drops shows a power law
distribution within the context of the Ananthakrishna model
�15�.

The spatiotemporal patterns of the peel front are indeed
rich and depend on the interplay of the three time scales.
Although the nature of spatiotemporal patterns is quite var-
ied, they can be classified as smooth synchronous, rugged,

stuck-peeled, and even nowhere stuck patterns. As expected
on general consideration of dynamics, rich patterns are ob-
served for the case in which all the three time scales are of
similar magnitude �illustrated for Cf =0.788�. All spatiotem-
poral patterns, except the smooth synchronous peel front, are
interesting. As a function of time, the nature of the peel front
can go through a specific sequence of these patterns �depend-
ing on the parameter values�. The most interesting pattern is
the stuck-peeled configuration, which is reminiscent of fibrils
observed in experiments �54,55,57�. Even among the SP con-
figurations, there are variations, for example rapidly chang-
ing, long-lived, edge of peeling, etc. Despite the varied range
of patterns, a few general trends of the influence of the pa-
rameters on the peel front patterns are worth noting. First, in
general the number of stuck and peeled segments increases
as u is decreased. Second, as the pull velocity is increased,
the rapidly varying stuck-peeled configurations observed at
low pull velocities become long-lived. The dynamical signa-
ture of these two parameters is reflected in the nature of the
phase space orbit. For instance, given a value of Cf and u,
the nature of the phase space orbit changes only when Vs is
increased, which allows the orbit to move way beyond the
values of ��vs�.

The study of the model shows that while the intermittent
peeling is controlled by the peel force function, the dynamics
of the peel front is influenced by all three time scales. This,
together with the dynamical analysis of the experimental
acoustic emission signals, establishes that deterministic dy-
namics is responsible for AE during peeling. The various
sequences of peel front patterns and their time dependences
lead to quite varied model acoustic signals. These can be
classified as a bunch of spikes, isolated bursts occurring at
near regular intervals, continuous bursts with an overall en-
velope separated by a quiescent state, continuous bursts
overriding a near periodic triangular form, irregular wave-
form overriding a periodic component, and continuous ir-
regular type. Interestingly, our studies show that there is a
definite correspondence between the model acoustic energy
and the nature of peel front patterns even though RAE��� is
the spatial average of the local strain rate. Despite this, two
distinguishable time scales in RAE��� can be detected, one
corresponding to short-term fluctuations and another corre-
sponding to overall periodic component. The short-term fluc-
tuations can be readily identified when the model acoustic
signal is fluctuating without any background component
�see, for example, Fig. 6�d��. These rapid changes in RAE
arise due fast dynamic changes in the SP configurations. The
minimum in RAE corresponds to the situation in which the
average velocity jumps of the SP configurations are smaller
compared to that at the preceding maximum. In contrast, the
overall periodicity in RAE��� �for instance, see Fig. 7�c�
among many other cases� can be identified with the changes
in the peel front patterns that occur over a cycle in the phase
plot. The minima in the RAE��� correspond to the peel pat-
terns where more segments are in a stuck state than in the
peeled state while the maxima corresponds to more stuck and
peeled segments �see Figs. 7�a� and 7�b��. The corresponding
phase plot usually goes through a cycle of visits between the
low and high velocity branches.

Often, however, the nature of the model acoustic energy
signal can be complicated as in the case of low tape mass
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�Cf =0.00788�. Even in such cases, some insight is possible.
This is aided by the analysis of the corresponding phase plot.
For example, for the low Cf case where the roller inertia
plays an important role in the dynamics, the rapidly fluctu-
ating acoustic energy has an overall triangular envelope �Fig.
9�e��. On an expanded scale, the convex envelope consists of
seven local peaks �Fig. 9�f��. Each of these is generated when
the various peel front segments make abrupt jumps between
the two branches of the peel force function. Note that the
phase space orbit has seven loops in this case �Fig. 9�d��. The
general identification of the minima in RAE with patterns that
have more stuck segments than peeled segments still holds.
Similarly, the maxima in RAE usually correspond to the pres-
ence of a large number of stuck-peeled configurations.

The above correspondence between the model acoustic
energy and the peel front patterns provides insight into the
transition from burst to continuous type of AE seen in ex-
periments as a similar transition from burst type to continu-
ous type is also seen in the model acoustic energy �for large
Cf =7.88�. At low pull velocities, the peel front goes through
a cycle of patterns where most segments of the peel front �or
the entire peel front� spend substantial time in the stuck state
switching to the stuck-peeled configuration. As the duration
of the SP configuration is short and velocity bursts are large,
RAE��� is of burst type �Fig. 13�c��. With increasing pull
velocity, only dynamic stuck-peeled configurations are seen,
which in turn leads to continuous AE signals �Figs. 4�a� and
4�b��. This, coupled with time series analysis of the model
acoustic signal, shows that the associated positive Lyapunov
exponent decreases with an increase in the traction velocity.
This is precisely the trend observed for experimental signals
as well. Thus, the decreasing trend of the largest Lyapunov
exponent can be attributed to the peel front breaking up into
a large number of small segments providing insight into
stick-slip dynamics and its connection to the AE process.

The present study has relevance to the general area of
stick-slip dynamics. As mentioned earlier, models for stick-
slip dynamics use negative force-drive rate relation. In such
models, the phase space orbit generally sticks to the slow
manifold �stable branches� of the force-drive rate function.
This leads to clearly identifiable stick and slip phases, the
former lasting much longer than the latter. However, recent
work on imaging the peel point dynamics �9� shows that the
ratio of the stick phase to the slip phase is about 2 or even
less than unity for high peel velocities. While all the known
models of the peel process predict that the duration of the
stick phase is longer than that of the slip phase, our model
displays the experimentally observed feature. This feature
emerges in the model due to the interplay of the three time
scales aided by incomplete relaxation of the relevant modes.
Our studies show that only for low pull velocity and high Cf
do we observe the stick phase lasting much longer than the
slip phase. As the pull velocity is increased, and for all other
parameter values, we find that the duration of the slip phase
�peel velocity being larger than unity� is nearly the same as
or less than that of the stick phase �peel velocity less than
unity�. Further, the present model provides an example of the
richness of spatiotemporal dynamics arising when more than
two time scales are involved. In this context, we emphasize
that the introduction of the Rayleigh dissipation functional to

model the acoustic energy is crucial for the richness of the
spatiotemporal peel front patterns. It is important to note that
this kind of dissipative term is specific to spatially extended
systems as it represents relaxation of neighboring points on
the peel front.

The present study has relevance to time dependent issues
of adhesion. For instance, apart from the fact that the time
series analysis addresses the general problem of extracting
dynamical information from noisy AE signals, it may have
relevance to the failure of adhesive joints and composites
that are subject to fluctuating loads. The failure time can be
estimated by calculating the Lyapunov spectrum for the AE
signals. If the largest Lyapunov exponent is positive, the in-
verse of the exponent should give an estimate of the time
scale over which the failure can occur and hence could prove
to be useful in predicting the failure of joints. The present
study should also help to optimize production schedules in
peeling tapes.

Finally, several features of the present study are common
to the PLC effect even though the underlying mechanism is
very different. In this case, the repeated occurrence of stress
drops during constant strain rate deformation �13,14,58� is
associated with the formation and possible propagation of
dislocation bands that are visible to the naked eye. The phe-
nomenon occurs only in a window of applied strain rates.
The instability is attributed to the pinning and unpinning of
dislocations from solute atmosphere, yet the dominant fea-
ture underlying the instability is the negative strain-rate sen-
sitivity of the flow stress that has two stable branches sepa-
rated by an unstable branch. Clearly, these features are
similar to the occurrence of the peel instability within a
window of pull velocities and the existence of an un-
stable branch in the peel force function. Further, the Anan-
thakrishna �AK� model for the PLC instability predicts that
the stress drops should be chaotic in a subinterval of the
instability domain �17�. This prediction has been verified
subsequently through the analysis of experimental stress-
strain curves obtained from single and polycrystals
�50,59–61�. This feature is again similar to the existence of
chaotic dynamics observed in a midrange of pull velocities in
the peeling problem, both in experiment and in the model. In
the case of the PLC effect, one finds that the positive
Lyapunov exponent characterizing the stress-time series de-
creases toward the end of chaotic window, both in experi-
ments and in the AK model. Again this feature is also seen in
the present peel model as in experimental AE signals. Dy-
namically, in the case of the AK model for the PLC effect the
decreasing trend of the positive Lyapunov exponent has been
shown to be a result of a forward Hopf bifurcation �HB�
followed by a reverse HB �15�. In the case of the peeling
problem as well, the instability begins with a forward HB
followed by a reverse HB. Finally, in the PLC effect �both in
experiments and the AK model�, as in the peeling problem,
the duration of the slip phase can be longer than that of the
stick phase with increasing drive rate. As many of these fea-
tures are common to two different systems, it is likely that
these are general features in other stick-slip situations with
multiple time scales that are limited to a window of drive
rates with multiple participating time scales.

A few comments may be in order about the model, in
particular about the parameters that are crucial for the dy-
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namics. While the agreement of several statistical and dy-
namical features of the model �for several sets of parameter
values� with the experimental AE series is encouraging, it
would be interesting to verify model results for other sets of
parameters. For instance, it is clear that the roller inertia and
the inertia of the tape mass are experimentally assessable
parameters. Thus, the influence of these two inertial time
scales can in principle be studied in experiments. However,
conventional experiments have been performed keeping
these parameters fixed, presumably, as there has been no sug-
gestion that the dynamics can be sensitive to these variables.
It would be interesting to verify the predicted dynamical
changes in the AE signals as a function of these two param-
eters. As for the influence of the dissipation parameter u, the
range of physically reasonable values of u is expected to be
small �10−4–10−3� as argued. Interestingly, the region of low
u is indeed the region where both statistics and dynamical

features compare well with that of the experiments. How-
ever, within the scope of the model, the viscoelastic proper-
ties of the adhesive have been modeled using an effective
spring constant. �This kind of assumption is common to stud-
ies in adhesion and tackiness, etc. �62�.� However, it is pos-
sible to include this feature as well. Finally, it must be stated
that features that depend critically on the thickness of the
film and its viscoelastic properties such as the shape of the
peel front are beyond the scope of the present model.
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